Snakes are primarily venomous animals that bite when frightened, which can be lethal. This is because snake venom is one of the most active biological fluids containing a wide range of peptides and proteins that can induce several effects, including hemo-, neuro-, cyto- and myotoxic effects, consequently becoming deleterious to life if untreated. Although snakes are found on almost all continents, the rural communities in sub-Saharan Africa are the most affected by snakebites, mainly due to increased humansnake interactions forced by their socioeconomic status and agricultural or rural practices. Consequently, this recently prompted the World Health Organisation to enlist snakebites envenoming among the category-A neglected tropical diseases with an estimated annual death of 7,300 in sub-Saharan Africa. Aside from mortality, snakebite envenomation also causes permanent disabilities in humans and a heavy burden on livestock, creating economic hardship for the already impoverished communities. Several animal-derived antivenoms have been developed for treating snakebites and wounds; they effectively attenuate venomrelated toxicity, tissue necrosis, and deaths. However, despite the efficacy of these antivenoms, several issues, such as problems in production and distribution, exorbitant prices, and adverse effects of the antivenoms, have challenged their practical use in subSaharan Africa. This review highlights the challenges that make conventional antivenoms unavailable to prone populations. We also discuss the plants used in the treatment of snake bites laying emphasis on Mucuna pruriens (Velvet bean) and Allium sativum (Garlic) as the two most studied medicinal plants. The progress and bottlenecks of using herbal antivenoms as alternatives in treating snakebite envenomation in sub-Saharan Africa are also discussed.