Modern engine research uses multi-dimensional Mathematical Models (MMs) that are applicable to multi-fuel engines. However, their use involves the availability of detailed technical data on the design and characteristics of the engine, which is not always possible. The use of a one-dimensional MM is more expedient for the prediction of engine parameters, but their application for this purpose has not yet been sufficiently investigated. This publication presents the results of numerical studies evaluating the application of a one-dimensional MM with bi-phase Vibe combustion laws for dual-fuel (DF) Diesel (D) and Natural Gas (NG) engine power parameters. The motor test results of a high-speed 4ČN79.5/95.5 Diesel Engine (DE) with a conventional fuel injection system were used as adequacy criteria. The engines were operated with D100 and DF D20/NG80, in high- (HLM), medium- (MLM), and low- (LLM) load modes, and the angle of Diesel-fuel Injection Timing (DIT) was changed from −1 to −13 °CA in the Before Top Dead Center (BTDC) range. Modelling of the single-phase Vibe combustion law has limited applicability for efficient use only in HLM (with an error of 7%). In the MLM and LLM regimes, owing to non-compliance with real bi-phasic combustion with a strongly extended NG diffusive second phase, the modelling error is 50%. Individual MM matching in MLM and LLM in a DF D20/NG80 experiment detected a burn time increase from between 45 and 50 °CA, to 110 and 200 °CA, respectively. Limited use of the one-dimensional MM in the evaluation of DF engine performance has been identified. When comparing a one-dimensional MM with experimental data, a bi-phase law of heat release characteristic should be considered for better coincidence. In addition, individual MM matching with an experiment on each engine load mode ensured acceptable accuracy in testing and optimising the parameters of the indicator process, including DIT.