Pyridine-based ring systems are heterocycle-structured subunits that are being abundantly employed in drug design, primarily because of their tremendous effect on pharmacological activity, which has resulted in the discovery of various broad-spectrum medicinal compounds. Pyridine derivatives are employed to treat multiple medical illnesses, including prostate cancer, AIDS, tuberculosis, angina, ulcer, arthritis, urinary tract analgesic, Alzheimer’s disease, and cardiovascular diseases. This chapter emphasized the currently available synthetic pyridine derivatives, including nimodipine, ciclopirox, efonidipine, nifedipine, milrinone, and amrinone, effects on cardiac ionic channels and their mechanisms of action for the cure. Pyridine derivatives regulate several voltage-gated ion channel behaviors, including sodium (Nav), calcium (Cav), and potassium (Kv) channels, and are set as a therapeutic approach. Particularly, calcium-channel blockers are the most common action of medicines with a dihydropyridine ring and are often used to treat hypertension and heart-related problems. Finally, this chapter gives the prospects of highly potent bioactive molecules to emphasize the advantages of using pyridine and dihydropyridine in drug design. This chapter discusses pyridine derivatives acting on cardiac ionic channels to combat CVS diseases. The book chapter describes the importance of pyridine derivatives as a novel class of medications for treating cardiovascular disorders.