Background: Growth and differentiation factor 15 (GDF15) has been proved to regulate the process of Myocardial ischemia-reperfusion injury (MIRI), which is a serious complication of reperfusion therapy. The present study aimed to explore if GDF15 could regulate the MIRI-induced ferroptosis. Method: MIRI animal model was established by ligating the left anterior descending coronary artery. Oxygenglucose deprivation/reoxygenation (OGD/R) cell model was established to imitate MIRI in vitro. The indicators of ferroptosis including mitochondrial damage, GPX4, FACL4, XCT4, and oxidative stress markers were evaluated. Results: Overexpression of GDF15 greatly inhibited MIRI, improved cardiac function, alleviated MIRI-induced ferroptosis. pc-DNA-GDF15 significantly inhibited the oxidative stress condition and inflammation response. The OGD/R-induced ferroptosis was also inhibited by pc-DNA-GDF15. Conclusion: We proved that the MIRI-induced ferroptosis could by inhibited by pc-DNA-GDF15 through evaluating mitochondrial damage, MDA, GSH, and GSSG. Our research provides a new insight for the prevention and treatment of MIRI, and a new understanding for the mechanism of MIRI-induced ferroptosis.