Agricultural water demands are mainly dependent on the supply from groundwater withdrawals and the supply from agricultural reservoirs. To understand the water cycle of the agricultural catchment, it is necessary to consider the actual situation of the water cycle of paddy fields in catchments through accurate hydrological modeling. In this study, streamflow simulations were implemented in consideration of the levee height of paddy fields and the irrigation period for one sub-catchment of the Boryeong Dam catchment using the integrated surface–groundwater model, CAT (Catchment Hydrologic Cycle Assessment Tool). To consider the agricultural reservoirs in modeling, the catchment was divided into the reservoir sub-catchments, upstream sub-catchments, downstream sub-catchments, and irrigated districts of each sub-catchment. This study aims to analyze the hydrological effects of agricultural reservoirs and groundwater pumping on the hydrological cycle of the catchment and on the soil moisture and groundwater level. As a result of the simulations, we found that the direct flow, baseflow, and groundwater recharge of the catchment increased with the agricultural reservoir supply water. In addition, the effect of drought on soil moisture content and groundwater level in the irrigated paddy fields from agricultural reservoirs was evaluated. The soil moisture increased by about 10% according to the water supply of agricultural reservoirs. The groundwater level rapidly decreased due to the groundwater abstraction during the irrigation period; however, it was analyzed that the water supply from agricultural reservoirs is significantly effective in preventing the decrease in the groundwater level in the irrigation season.