2015
DOI: 10.1007/s00162-015-0366-5
|View full text |Cite
|
Sign up to set email alerts
|

Effects of kinematics on aerodynamic periodicity for a periodically plunging airfoil

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2017
2017
2022
2022

Publication Types

Select...
4

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 27 publications
0
1
0
Order By: Relevance
“…Before studying the aerodynamic forces and flow field of the wing model, CFD code [14], mesh density, the first mesh spacing, computation time step, and computational domain size used in this study have been validated, as shown in Figure 4, here, the time t is non-dimensionalized by the period of spinning around wing span axis. As a result, a numerical solution independent of mesh and time steps can be achieved when the mesh dimension is 70 × 75 × 152 (in the normal, chordwise, and spanwise directions, respectively), the domain size is 30c, the first mesh spacing at the wall is 0.001c, and 400 time steps are used in one spinning cycle.…”
Section: Mesh Model and Validationmentioning
confidence: 99%
“…Before studying the aerodynamic forces and flow field of the wing model, CFD code [14], mesh density, the first mesh spacing, computation time step, and computational domain size used in this study have been validated, as shown in Figure 4, here, the time t is non-dimensionalized by the period of spinning around wing span axis. As a result, a numerical solution independent of mesh and time steps can be achieved when the mesh dimension is 70 × 75 × 152 (in the normal, chordwise, and spanwise directions, respectively), the domain size is 30c, the first mesh spacing at the wall is 0.001c, and 400 time steps are used in one spinning cycle.…”
Section: Mesh Model and Validationmentioning
confidence: 99%