Large areas of traditional slope cropland were recently converted to other land-use types in the semiarid Loess Plateau of China. In this study, we selected four representative conversion options of slope croplands, i.e., pastureland rotated with cropland (cultivated with Medicago sativa L. and rotated with Triticum aestivum L.), shrubland and woodland (afforested with Hippophae rhamnoides L. and Pinus tabulaeformis), and grassland (native herbage Stipa breviflora) to study the effect of landuse conversion by comparing with traditional cropland. Compared with slope cropland, the relative effects of different conversion options on surface runoff and soil erosion were assessed over a 14-year measurement period. Observations showed that distinct features and consequences of vegetation succession were found among the conversion options. Plots of shrubland had the highest vegetation coverage with dense undergrowth; natural herbaceous and subshrub species gradually spread into plots of grassland resulting in higher vegetation cover. Neither bushes nor herbs colonized the plots of Pinus tabulaeformis, which resulted in a higher percentage of bare soil. Significant differences in runoff generation, sediment yield and conservation efficiencies among the selected conversion options were detected through an analyses of variance (ANOVA). Compared with cropland, total runoff and sediment decreased by 65 per cent and 95 per cent in shrubland, 41 per cent and 92Á5 per cent in grassland, 18 per cent and 77 per cent in woodland, and 12 per cent and 58 per cent in pastureland, respectively. The ranking of soil and water conservation efficiencies was shrubland > grassland > woodland > pastureland > cropland. Based on the effectiveness of soil and water conservation, shrubland and grassland are highly recommended as promising options for cropland conversion projects. However, pastureland and woodland are not suggested as potential options for slope-cropland conversion because of low soil and water conservation in the long term.