We study paraxial beam propagation parallel to the screw axis of a dislocated amorphous medium that is optically weakly inhomogeneous and isotropic. The effect of the screw dislocation on the beam's orbital angular momentum is shown to change the optical vortex strength, rendering vortex annihilation or generation possible. Furthermore, the dislocation is shown to induce a weak biaxial anisotropy in the medium due to the elasto-optic effect, which changes the beam's spin angular momentum as well as causing precession of the polarization. We derive the equations of motion of the beam and demonstrate the optical Hall effect in the dislocated medium. Its application with regard to determining the Burgers vector as well as the elasto-optic coefficients of the medium is explained.