The process of symmetrical multidirectional pressure was adopted to inhibit the macrosegregation of eutectic Si in squeeze cast A356 alloy. Five pressure modes were applied to study the effects of multidirectional pressure and the timing of pressure application on the macrosegregation of eutectic Si. The results show that the directional movement of the solute-rich liquid phase could be inhibited by symmetrical multidirectional pressure. Therefore, the macrosegregation of eutectic Si in the casting part was inhibited. Moreover, the timing of pressure application should be matched with the local pressure position. After the effective inhibition of the macrosegregation of eutectic Si, the elongation of the alloy was significantly improved, reaching up to 7.12%. In addition, the plastic deformation region was observed at the local pressure position. The grains in the plastic deformation region were refined. The proportion of low-angle grain boundaries in the deformed region was about 30%, which was much higher than that in the other undeformed region. The size of the Fe-containing intermetallics in the deformed region decreased to 5–10 μm, which is favorable for the mechanical properties of the alloy.