The work is devoted to the investigation of flutter oscillations and the stability of the closed cylindrical shell in supersonic gas flow in an inhomogeneous temperature field. It is assumed that supersonic gas flows on the outside of the shell with an unperturbed velocity U, directed parallel to the cylinder generatrix. Under the action of an inhomogeneous temperature field the shell bulges out, this deformed state is accepted as unperturbed, and the stability of this state is studied. The main nonlinear equations and relationships describing the behavior of the examined system are derived. The formulated boundary value problem is solved using the Galerkin method. The joint influence of the flow and the temperature field on the relationship between the amplitude of nonlinear oscillations of a cylindrical shell and the speed of the flowing stream is studied. The critical velocity values are calculated from the corresponding linear system and are given in tables. The numerical results show that: (a) the surrounding flow significantly affects the nature of the investigated relationship; (b) a certain interval of supersonic velocity exists where it is impossible to excite steady-state flutter oscillations (the silence zone); (c) the dependence of amplitude on the supersonic velocity can be either multivalued or single-valued.