The structural, morphological, elemental and electrical properties of MgZnO thin films, grown on p-Si (001) substrates by dual-ion beam sputtering deposition (DIBSD) system at different substrate temperatures were thoroughly investigated. X-ray diffraction (XRD) pattern of MgZnO film exhibited crystalline hexagonal wurtzite structure with the preferred (002) crystal orientation. The full-width at half-maximum of the (002) plane was the narrowest with a value of 0.226 • from MgZnO film grown at 400 • C. X-ray photoelectron spectroscopy analysis confirmed the substitution of Zn 2+ by Mg 2+ in MgZnO thin films and the absence of MgO phase. Correlation between calculated crystallite size, as evaluated from XRD measurements, and room-temperature carrier mobility, as obtained from Hall measurements, was established. Current-voltage characteristics of MgZnO thin films were carried out under the influence of dark and light illumination conditions and corresponding values of photosensitivity were calculated. MgZnO film grown at 100 • C exhibited the highest photosensitivity of 1.62. Compared with one of the best-reported values of photosensitivity factor from ZnO-material-based films available in the literature, briefly, ∼3.085-fold improved photosensitivity factor at the same bias voltage (2 V) was obtained.