To explore the optimum use of stabilised elements and study the influences of stabilisation in 18Cr-2Mo grades, the Nb and Nb + Ti microalloying investigation focused on the relationships of the microstructure and mechanical properties of the microalloyed 18Cr-2Mo ferritic stainless steel thick plates. Thermo-Calc calculation was performed to predict the equilibrium phase diagrams. Afterwards, the microstructure, i.e. grain size and precipitation, of as-annealed specimens was analysed by means of optical microscopy, scanning electron microscopy and transmission electron microscopy, X-ray diffraction and energydispersive spectroscopy. Also, electron backscatter diffraction mapping was constructed to characterise grain boundary. The mechanical properties, including tensile strength and impact toughness, were tested to correlate with the microstructure. The results show that the grain sizes of Nb-stabilised steel are comparatively smaller, which is related to the fine precipitation at the grain boundaries and beneficial to the impact toughness. The increase in its strength is not apparent due to the inhomogeneous grain sizes. The grain boundary characters are similar, which is not the main factor related to their mechanical properties. When Ti is added, TiN forms above the liquidus, and large TiN particles evidently impair impact toughness.