Lignin is the cell wall component most frequently associated with hardening. Its characterization and quantification are very important to understand the biochemical modifications related to the changes in texture of vegetables such as asparagus (Asparagus officinalis), in which this organoleptic attribute is a very important quality factor. In this study, asparagus lignin from the basal sections of fresh and stored spears was analyzed using 2 methods, the traditional (Klason lignin) and the recently developed derivatization, followed by reductive cleavage (DFRC) method. The latter is a simple and reproducible technique for lignin characterization based on a degradation procedure that produces analyzable monomers and dimers by cleaving alpha- and beta-aryl ethers in lignins. The primary monomers derived from DFRC degradation of lignins are essentially p-coumaryl peracetate, coniferyl peracetate, and sinapyl peracetate. To evaluate the efficiency of the DFRC method, our investigations have been carried on distinct sample types, including wood (data not shown), straw, and asparagus samples. The results have confirmed that lignin composition is affected by plant nature. It has been found that whereas wood samples mostly contain coniferyl units, plant foods, such as straw and asparagus, contain both coniferyl and guaiacyl units.