Abstract-Voltage-gated Na ϩ channels are critical determinants of electrophysiological properties in the heart. Stimulation of -adrenergic receptors, which activate cAMP-dependent protein kinase (protein kinase A [PKA]), can alter impulse conduction in normal tissue and promote development of cardiac arrhythmias in pathological states. Recent studies demonstrate that PKA activation increases cardiac Na ϩ currents, although the mechanism of this effect is unknown. To explore the molecular basis of Na ϩ channel modulation by -adrenergic receptors, we have examined the effects of PKA activation on the recombinant human cardiac Na ϩ channel, hH1. Both in the absence and the presence of h 1 subunit coexpression, activation of PKA caused a slow increase in Na ϩ current that did not saturate despite kinase stimulation for 1 hour. In addition, there was a small shift in the voltage dependence of channel activation and inactivation to more negative voltages. Chloroquine and monensin, compounds that disrupt plasma membrane recycling, reduced hH1 current, suggesting rapid turnover of channels at the cell surface. Preincubation with these agents also prevented the PKA-mediated rise in Na ϩ current, indicating that this effect likely resulted from an increased number of Na ϩ channels in the plasma membrane. Experiments using chimeric constructs of hH1 and the skeletal muscle Na ϩ channel, hSKM1, identified the I-II interdomain loop of hH1 as the region responsible for the PKA effect. These results demonstrate that activation of PKA modulates both trafficking and function of the hH1 channel, with changes in Na ϩ current that could either speed or slow conduction, depending on the physiological circumstances. (Circ Res. 2000;87:33-38.) Key Words: sodium channels Ⅲ protein kinases Ⅲ heart V oltage-gated Na ϩ channels play a pivotal role in the normal conduction of electrical impulses in the heart. In addition, dysfunction of Na ϩ channels can cause lifethreatening cardiac arrhythmias by slowing impulse conduction 1 or prolonging cardiac repolarization. 2 Thus, the factors that regulate Na ϩ channel function are of great interest from both a pathophysiological and a therapeutic standpoint. Neurohumoral stimulation of -adrenergic receptors, which activate cAMP-dependent protein kinase (protein kinase A [PKA]), can modulate cardiac electrophysiology and enhance conduction in normal ventricular myocardium. 3,4 On the other hand, adrenergic stimulation is a potent stimulus for arrhythmic events in both the congenital long-QT syndrome 2 and cardiomyopathic states. 5 It is likely that modulation of ion channel function plays a role in this arrhythmogenesis.The effects of -adrenergic receptor stimulation on cardiac Na ϩ channel function have been controversial because of conflicting results of previous studies. More recent studies using rat ventricular myocytes have demonstrated a consistent increase in I Na with PKA stimulation, 6,7 with similar results obtained using recombinant cardiac Na ϩ channels. After expression in Xenopus...