By accounting for the traffic interruption probability on two-lane highway under honk environment, an extended lattice hydrodynamic model is presented in the paper. In view of the novel model, a series of researches are carried out. The neutral stability condition and the stable condition can be derived through linear analysis. Then, the mKdV equation near the critical point can be obtained by applying nonlinear analysis, which describes the traffic jams according to the kink-antikink density waves. In addition, numerical simulation is performed, which confirms that traffic interruption probability on two-lane highway under honk environment can develop traffic jams by the change of density waves. Also, the phenomenon is consistent with the results of previous theoretical analysis. It shows that accounting for the traffic interruption probability on two-lane highway under honk environment can stabilize the traffic flow efficiently.