The accelerated increase of nitrogen deposition is the third cause of biodiversity loss, as a result of saturation of ecosystems worldwide. The effects of nitrogen deposition on the endemic and endangered neotropical epiphytic orchid, Laelia speciosa, were evaluated via a dose-response experiment and a stable isotopic field assessment for individuals from a city and from an oak forest, in order to evaluate the potential risk facing this orchid, and record the history of the nitrogen deposition of series of consecutive annually produced pseudobulbs. Lower doses of nitrogen of up to 20 kg N ha yr -1 the dose that led to optimal performance of plants, acted as fertilizer. For instance, chlorophyll content and chlorophyll fluorescence (Fv/Fm) peaked at 0.66 ± 0.03 g m -2 and 0.85 ± 0.01, respectively. In contrast, toxic effects were observed at the higher doses of 40 and 80 kg N ha yr -1 , leading a decrease of 38% of the chlorophyll content and 23% of the chlorophyll fluorescence. For the field assessment, a tissue nitrogen content of 1.2 ± 0.1% (dry mass basis) for the orchids suggested non-toxic deposition rates both at the city and the oak forest. However, their respective isotopic signatures revealed different sources of N at each site.Indeed, in the oak forest δ 15 N amounted -3.1 ± 0.3‰, typical of places with low industrial activities, while in the city the δ 15 N reached 5.6 ± 0.2‰, typical of sites with some degree of industrial and automobile activity. Laelia speciosa would be an adequate bioindicator of nitrogen deposition because its ability to take up nitrogen from the atmosphere while preserving its isotopic signature and showing a clear physiological response to increasing inputs of nitrogen.However, its limited geographical distribution precludes the orchid as an ideal candidate for biomonitoring. Thus other vascular epiphytes should be considered for this purpose.