The use of virgin and recycled plastic macro fibers as reinforcing elements in construction materials has recently gained increasing attention from researchers. Specifically, recycled fibers have become more attractive owing to their large-scale availability, negligible cost, and low environmental footprint. In this work, we investigate the benefits related to the use of fully-recycled synthetic fibers as dispersed reinforcement in Fiber Reinforced Cement Composites (FRCCs). In light of the reference performance of FRCCs including virgin polypropylene (PP) fibers only, the mechanical response of composites reinforced with polyolefin filaments treated with a sol-gel silica coating and polyethylene terephthalate (PET)/polyethylene (PE) cylindrical draw-wire fibers is here assessed through three-point bending tests. Remarkably, recycled polyolefins lead to a notable enhancement in terms of peak strength and post-crack energy dissipation capability. This improvement is ascribed to both the flattened shape of fibers and the surface coating, which turns out to be very effective at strengthening the fiber-to-matrix bond. On the other hand, PET/PE fibrous reinforcement generally leads to a lower toughness, if compared to the virgin fibers. However, no reduction in terms of peak stress is evidenced. Balancing the significance of mechanical performance and environmental sustainability in the framework of a circular economy approach, both fully-recycled fibers at hand can be regarded as promising candidates for innovative structural applications.