Salinity stress is a major factor affecting the nutritional and metabolic profiles of crops, thus hindering optimal yield and productivity. Recent advances in nanotechnology propose an avenue for the use of nano-fertilizers as a potential solution for better nutrient management and stress mitigation. This study aimed to evaluate the benefits of conventional and nano-fertilizers (nano-Zn/nano-Si) on maize and subcellular level changes in its ionomic and metabolic profiles under salt stress conditions. Zinc and silicon were applied both in conventional and nano-fertilizer-using farms under stress (100 mM NaCl) and normal conditions. Different ions, sugars, and organic acids (OAs) were determined using ion chromatography and inductively coupled plasma mass spectroscopy (ICP-MS). The results revealed significant improvements in different ions, sugars, OAs, and other metabolic profiles of maize. Nanoparticles boosted sugar metabolism, as evidenced by increased glucose, fructose, and sucrose concentrations, and improved nutrient uptake, indicated by higher nitrate, sulfate, and phosphate levels. Particularly, nano-fertilizers effectively limited Na accumulation under saline conditions and enhanced maize’s salt stress tolerance. Furthermore, nano-treatments optimized the potassium-to-sodium ratio, a critical factor in maintaining ionic homeostasis under stress conditions. With the growing threat of salinity stress on global food security, these findings highlight the urgent need for further development and implementation of effective solutions like the application of nano-fertilizers in mitigating the negative impact of salinity on plant growth and productivity. However, this controlled environment limits the direct applicability to field conditions and needs future research, particularly long-term field trials, to confirm such results of nano-fertilizers against salinity stress and their economic viability towards sustainable agriculture.