The “hologenome” concept is an increasingly popular way of thinking about microbiome-host for marine organisms. However, it is challenging to track hologenome dynamics because of the large amount of material, with tracking itself usually resulting in damage or death of the research object. Here we show the simple and efficient holo-2bRAD approach for the tracking of hologenome dynamics in marine invertebrates (i.e., scallop and shrimp) from one holo-2bRAD library. The stable performance of our approach was shown with high genotyping accuracy of 99.91% and a high correlation of r > 0.99 for the species-level profiling of microorganisms. To explore the host-microbe association underlying mass mortality events of bivalve larvae, core microbial species changed with the stages were found, and two potentially associated host SNPs were identified. Overall, our research provides a powerful tool with various advantages (e.g., cost-effective, simple, and applicable for challenging samples) in genetic, ecological, and evolutionary studies.