Abstract. Tropical forests contribute significantly to the emission and uptake of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). However, studies on the soil environmental controls of greenhouse gases (GHGs) from African tropical forest ecosystems are still rare. The aim of this study was to disentangle the regulation effect of soil nutrients on soil GHG fluxes in a tropical forest in northwestern Uganda. Therefore, a large-scale nutrient manipulation experiment (NME) based on 40 m × 40 m plots with different nutrient addition treatments (nitrogen (N), phosphorus (P), N + P, and control) was established. Soil CO2, CH4, and N2O fluxes were measured monthly using permanently installed static chambers for 14 months. Total soil CO2 fluxes were partitioned into autotrophic and heterotrophic components through a root trenching treatment. In addition, soil temperature, soil water content, and mineral N were measured in parallel to GHG fluxes. N addition (N, N + P) resulted in significantly higher N2O fluxes in the transitory phase (0–28 days after fertilization, p