The global coal industry yields a vast amount of tailings waste, and the utilisation of these tailings necessitates innovative efforts contributing to the United Nations Sustainable Development Goals. One of such novel initiatives is to reuse coal tailings (CT) safely, ecofriendly, and cost-effectively in agroecosystems as a soil conditioner to enhance the productivity of lands. This study aimed to evaluate the potential utilisation of coal tailings waste in the soil amelioration to improve plant performance. The physico–chemical characteristics of coal tailings from two Australian mining sites (CT1 and CT2) showed that the tailings samples are alkaline with loamy and loamy sand textures, respectively. The tailings have ~ 3% of macronutrients, high carbon (C), and low heavy metals and metalloids (As, Cd, Se, Cu, Zn, and Pb). The germination rate of tomato seeds was improved in the low-rate CT treatment. Greenhouse tomato plants exhibited an increase in leaf’s K, Ca, and Mg contents in CT1 and CT2 treatments. More importantly, the CT treatment-induced accumulation of heavy metals in plants was mostly insignificant in both CT treatments. Therefore, we highlight the potential application of coal tailings as a soil conditioner because of the beneficial effect of improved carbon and nutrients (N, P, K, Mg, and Ca) in tomato leaves. Further amendment of the coal tailings should focus on the adjustment of pH and the addition of other beneficial materials for the improvement of soil properties for crops in both the greenhouse and the field.