The theoretical analysis of rheological effects of Rabinowitsch fluid on the steady and dynamic characteristics of inclined stepped composite bearings is investigated. The Rabinowitsch fluid model is considered to account the pseudoplastic and dilatant nature of the lubricant due to the presence of additives. The perturbation technique is used to derive the modified Reynolds equation separately for both steady state and perturbed characteristics of the bearing. The closed form expressions for the bearing characteristics are obtained. By using these expressions, the performance characteristics of four different types of bearings such as stepped, plane inclined slider, composite tapered land and composite tapered concave bearings are determined. It is found that, the non-Newtonian behaviour of the Rabinowitsch fluid have a significant effect on bearing characteristics. Further, it is found that the existence of a critical value for profile parameter at which the dynamic stiffness coefficient attains maximum.