PIWI-interacting RNAs (piRNAs) are a type of non-coding RNAs that interact with PIWI proteins, which are members of the argonaute family. Originally described in the germline, piRNAs are also expressed in human somatic cells in a tissue-specific manner. piRNAs are involved in spermatogenesis, germ stem-cell maintenance, silencing of transposon, epigenetic and genomic regulation and rearrangement. A large number of studies have demonstrated that expression of piRNAs is involved in many kinds of disease, including cancer. Abnormal expression of piRNAs is emerging as a critical player in cancer cell proliferation, apoptosis, invasion, and migration in vitro and in vivo. Functionally, piRNAs maintain genomic integrity by repressing the mobilization of transposable elements, and regulate the expression of downstream target genes via transcriptional or post-transcriptional mechanisms. Furthermore, altered expression of piRNAs in cancer is linked to clinical outcome, highlighting the important role that they may play as novel diagnostic and prognostic biomarkers, and as therapeutic targets for cancer therapy. In this review, we focus on the biogenesis and the functional roles of piRNAs in cancers, discuss emerging insights into the roles of piRNAs in the occurrence, progression, and treatment of cancers, reveal various mechanisms underlying piRNAs-mediated gene regulation, and highlight their potential clinical utilities as biomarkers as well as potential targets for cancer treatment.