The study of the co-transport of Cr(VI) and microplastics (MPs) in porous media is important for predicting migration behavior and for achieving pollution removal in natural soils and groundwater. In this work, the effect of MPs on Cr(VI) migration in saturated porous media was investigated at different ionic strengths (ISs) and pHs. The results showed that pH 7 and low IS (5 mM), respectively, promoted the movement of Cr(VI), which was further promoted by the presence of MPs. The Derjaguin–Landau–Verwey–Overbeek (DLVO) results showed that the repulsive energy barrier between MPs and quartz sand decreased with increasing IS and decreasing pH, respectively, which promoted the retention of MPs in quartz sand and constrained the competition of Cr(VI) for adsorption sites on the surface of the quartz sand, thus facilitating the enhanced migration of Cr(VI), while Cr(VI) behaved conversely. Sodium alginate/nano zero-valent iron-reduced graphene oxide (SA/NZVI-rGO) gel beads could achieve the removal of MPs through a π-π interaction, hydrogen bonding, and electrostatic attraction, but the MPs removal would be reduced by 40% due to the competitive adsorption of Cr(VI). Notably, 97% Cr(VI) removal could still be achieved by the gel beads in the presence of MPs. Therefore, the gel beads can be used as a permeation reaction barrier to inhibit the MP-induced high migration of Cr(VI). The Cr(VI) breakthrough curves in reactive migration were well-fitted with the two-site chemical nonequilibrium model. Overall, the findings of this work contribute to the understanding of the migration behavior of Cr(VI) and MPs in saturated porous media and provide a theoretical basis for the remediation of soils and groundwater contaminated with Cr(VI) and MPs.