When picking up objects, we tend to grasp at contact points that minimize slippage and torsion, which depend on the particular shape. Normally, grasp points could be planned before initiating movement. We tested whether grasp points can be determined during online control. Subjects reached to grasp virtual planar objects with varied shapes. On some trials, the object was changed during movement, either rotated by 45° or replaced with a different object. In all conditions, grasp axes were well adapted to the target shape, passing near the center of mass with low force closure angles. On perturbed trials, corrective adjustments were detectable within 320 ms and were toward the same grasp axes observed on unperturbed trials. Perturbations had little effect on either kinematics or the optimality of final grasp points. Our results demonstrate that the visuomotor system is capable of online processing of shape information to determine appropriate contact points for grasping.