Acromegaly is associated with premature cardiovascular mortality. GH replacement therapy decreases inflammatory markers of cardiovascular risk, but little is known about these markers in patients with acromegaly. The GH receptor antagonist, pegvisomant, reduces IGF-I levels in 98% of patients treated. We investigated the effects of GH receptor blockade on inflammatory and other cardiovascular risk markers in active acromegaly. Forty-eight patients with acromegaly and 47 age- and body mass index-matched controls were included. The study consisted of 3 parts: a cross-sectional study, a prospective randomized 12-wk placebo-controlled study, and a longitudinal open-label study of up to 18 months of pegvisomant treatment. After baseline evaluation, patients with acromegaly were randomized to placebo (n = 14), 10 mg (n = 12), 15 mg (n = 10), or 20 mg (n = 12) daily pegvisomant for 12 wk. Subsequently, all patients received at least 10 mg pegvisomant daily for up to 18 months, with dose adjustments to achieve a normal IGF-I level. Anthropometry, GH, IGF-I, and pegvisomant levels were measured monthly. C-reactive protein (CRP), IL-6, homocysteine, lipoprotein(a), glucose, insulin, triglycerides, total cholesterol, and high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol were determined at baseline, 4 and 12 wk in the placebo-controlled study and at 3-month intervals (during which IGF-I levels were normal) in the longitudinal study. In the cross-sectional study, patients had lower CRP than did controls [median, 0.3 (range, 0.2-0.8) vs. 2.0 (0.6-3.7) mg/liter; P < 0.0001] and had higher insulin [78.6 (55.8-130.2) vs. 54.5 (36.6-77.5) pM, P = 0.0051]. IL-6, homocysteine, triglycerides, lipoprotein(a), LDL cholesterol and HDL cholesterol were not different between groups. In the placebo-controlled study, CRP increased in patients treated with 20 mg pegvisomant, compared with placebo (mean +/- SEM, 13.7 +/- 3.6 vs. 0.5 +/- 3.3 mg/liter; P = 0.010). There were no significant differences in IL-6, homocysteine, glucose, insulin, triglyceride, total cholesterol, LDL cholesterol and HDL cholesterol levels. In the longitudinal open-label study (median duration, 15.6 months), CRP increased by 2.0 +/- 0.5 mg/liter (P = 0.0002). Total cholesterol and triglycerides increased (0.22 +/- 0.11 mM, P = 0.050; and 0.25 +/- 0.09 mM, P = 0.007, respectively), whereas lipoprotein(a) decreased (-70 +/- 33 mg/liter, P = 0.039). Glucose, insulin, homocysteine, HDL cholesterol, and IL-6 did not change. We conclude that patients with active acromegaly have lower CRP and higher insulin levels than healthy controls. Administration of pegvisomant increases CRP levels. We propose that GH secretory status is an important determinant of serum CRP levels, although additional studies are needed to determine the mechanism and significance of this finding.