Doxorubicin (DOX) is an effective anthracycline anti-tumor antibiotic. Because of its cardiotoxicity, the clinical application of DOX is limited. Paeoniflorin (PEF), a monoterpene glucoside extracted from the dry root of Paeonia, is reported to exert multiple beneficial effects on the cardiovascular system. The present study was designed to explore the protective effect of PEF against DOX-induced cardiomyocyte apoptosis and the underlying mechanism. In cultured H9c2 cells, PEF (100 µmol/l) was added for 2 h prior to exposure to DOX (5 µmol/l) for 24 h. Cell viability, creatine kinase activity, cardiomyocyte apoptosis, intracellular reactive oxygen species (ROS) levels, and the expression of microRNA-1 (miR-1) and B-cell lymphoma 2 (Bcl-2) were measured following treatment with PEF and/or DOX. The results showed that treatment with DOX notably induced cardiomyocyte apoptosis, concomitantly with enhanced ROS generation, upregulated miR-1 expression and downregulated Bcl-2 expression. These effects of DOX were significantly inhibited by pretreatment of the cells with PEF. These results suggest that the inhibitory effect of PEF on DOX-induced cardiomyocyte apoptosis may be associated with downregulation of miR-1 expression via a reduction in ROS generation.