The greater wax moth, Galleria mellonella, is a significant pest in apiculture and a well-established model organism for immunological and ecotoxicological studies. This investigation explores the individual and combined effects of the ectoparasite Bracon hebetor (B.h.) and the entomopathogenic nematode Steinernema carpocapsae (S.c.) on G. mellonella larvae. We evaluated the activity of oxidative stress enzymes, including superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST), malondialdehyde (MDA) levels, cytochrome P450 activity, cell viability using Annexin V-FITC, DNA damage via comet assay, and larval morphology through scanning electron microscopy (SEM). Control larvae exhibited higher GPx and GST activities compared to those treated with B.h., S.c., or the B.h. + S.c. combination. Conversely, MDA levels displayed the opposite trend. SOD activity was reduced in the B.h. and S.c. groups but significantly higher in the combined treatment. Cytochrome P450 activity increased in response to parasitism by B. hebetor. The Annexin V-FITC assay revealed decreased cell viability in parasitized groups (B.h. 79.4%, S.c. 77.3%, B.h. + S.c. 70.1%) compared to controls. DNA damage analysis demonstrated significant differences between groups, and SEM observations confirmed severe cuticle abnormalities or malformations in G. mellonella larvae. These findings highlight the complex interactions between B. hebetor, S. carpocapsae, and their host, G. mellonella. Additionally, they illuminate the intricate physiological responses triggered within the host larvae.