Use of blast-furnace slag fine powder blended cement is an important option for lowering carbon emission in the concrete construction sector. However, concrete with blended cement (hereafter denoted as BFS concrete) has been believed vulnerable to shrinkage cracking and its use in building construction has been avoided except for underground structural elements in Japan. To develop the use of BFS concrete in building construction, quantitative evaluation of its shrinkage cracking resistance is necessary. The scope of this study included experimental verification of shrinkage resistance of BFS concrete, in which the effects of ambient temperature were emphasized, and restraint shrinkage cracking tests with BFS concrete subjected to three levels of ambient temperatures of 10, 20 and 30°C compared with normal concrete. To improve crack resistance, an improved BFS concrete using additives such as water retaining shrinkage reducing agent (SRA) was added to the experiments. As a result, the following two major conclusions were obtained: 1) The crack resistances of BFS concrete deteriorated due to increasing free shrinkage strain at high temperatures, while this was not the case for the normal concrete, and 2) water retaining type SRA dramatically improved the crack resistance of BFS concrete at high temperatures.