Lactoperoxidase (LPO), a mammalian secretory heme peroxidase, catalyzes the oxidation of thiocyanate by hydrogen peroxide to produce hypothiocyanate, an antibacterial agent. Although LPO is known to be activated at acidic pH and in the presence of iodide, the structural basis of the activation is not well understood. We have examined the effects of pH and iodide concentration on the catalytic activity and the structure of LPO. Electrochemical and colorimetric assays have shown that the catalytic activity is maximized at pH 4.5. The heme Soret absorption band exhibits a small red-shift at pH 5.0 upon acidification, which is ascribable to a structural transition from a neutral to an acidic form. Resonance Raman spectra suggest that the heme porphyrin core is slightly contracted and the Fe-His bond is strengthened in the acidic form compared to the neutral form. The structural change of LPO upon activation at acidic pH is similar to that observed for myeloperoxidase, another mammalian heme peroxidase, upon activation at neutral pH. Binding of iodide enhances the catalytic activity of LPO without affecting either the optimum pH of activity or the heme structure, implying that the iodide binding occurs at a protein site away from the heme-linked protonation site.