In a 2-year study (1993-1994), `New Yorker' tomato (Lycopersicon esculentum Mill.) plants grown in field lysimeters were subjected to four watertable depth (WTD) treatments (0.3, 0.6, 0.8, and 1.0 m from the soil surface) factorially combined with 5 potassium/calcium fertilization combinations. Mature-green fruit from four replicates of each treatment were stored at 5C for 21 days, and fruit color was monitored with a tristimulus colorimeter. Fruit were subsequently allowed to ripen at 20C for 10 days, at which time chilling injury was assessed on the basis of delayed ripening and area of lesions. Potassium and calcium applied in the field had no effect on chilling tolerance of the fruit. In the drier year (1993), shallower WTD treatments generally yielded fruit that changed color less during chilling and were more chilling-sensitive based on delayed ripening. In the wetter year, differences in color change and chilling tolerance between WTD, if any, were small. Over both years, lesion area varied with WTD, but not in a consistent manner. Based on these results, we suggest that differences in water availability should be considered when studying tomato fruit chilling.