The development of modern invasive surgery is highly dependent on the performance of surgical instruments, understood as long-term efficiency arising from high resistance to wear and corrosion. In order to maintain sufficient reliability, surgical cutting instruments are often made of martensitic stainless steels. Nevertheless, the use of ferrous alloys in medical applications is still a concern due to their questionable corrosion and wear resistance. To extend their biocompatibility, improve stability in variable environmental conditions, improve ease of handling, and maximize their performance, diffusion layers and coatings are applied to the surface. The aim of this work was to evaluate the effect of TiN and diamond-like carbon (DLC) surface modification on the performance of surgical drill bits, that is, wear and corrosion resistance, measured in model and field tests. Based on the findings presented, DLC layers can be recommended as antiwear and anti-corrosion coatings for surgical drill bits.