Androgenesis is an important chromosome set manipulation technique used in sex control in aquaculture. Haploid embryos exhibit haploid syndrome and show abnormalities and even die during early embryonic development. In this study, we used whole genome bisulfite sequencing (WGBS) to investigate the genome-wide DNA methylation profiles in haploid females (1n-X) and males (1n-Y), and diploid females (2n-XX) and males (2n-XY) of tiger pufferfish (Takifugu rubripes), an economically important fish in China. A total of 96.32 Gb clean data was produced. Analysis of differentially methylated regions (DMRs) showed that haploids had more hyper-methylated regions than diploids, which may be related to abnormal development and early embryonic death in haploids. There were 7,838 hyper-methylated differentially methylated genes (DMGs) and 4,755 hypo-methylated DMGs in haploid vs. diploid comparisons in both females and males. These DMGs were mainly related to genomic stability maintenance and cell cycle regulation. slf1, actr8, gas2, and pbrm1 genes were detected to validate the methylation sequencing. After combining the methylation data with the corresponding transcriptome data, we identified several genes, including guca2a, myoc, fezf2, rprml, telo2, s100a1, and marveld1, which exhibited differential expression levels modulated by DNA methylation. In conclusion, our study revealed different methylation and expression profiles between haploid and diploid T. rubripes for the first time. Several DMGs were identified between different ploidy levels, which may be related to haploid syndrome formation. The results expand the understanding of the effects of ploidy on the early development of teleosts and provide knowledge about target genes and networks to improve the survival rate of haploids.