2014
DOI: 10.1080/08957347.2014.944305
|View full text |Cite
|
Sign up to set email alerts
|

Effects of Population Heterogeneity on Accuracy of DIF Detection

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
12
0
1

Year Published

2014
2014
2024
2024

Publication Types

Select...
9

Relationship

1
8

Authors

Journals

citations
Cited by 23 publications
(14 citation statements)
references
References 27 publications
1
12
0
1
Order By: Relevance
“…Test fairness review processes typically involve analyzing items by investigating differential item functioning (DIF) posttest administration. Ercikan and Oliveri (2013) and Oliveri et al (2014) identified shortcomings related to DIF analyses when tests are administered to heterogeneous populations, including under detecting DIF, suggesting the need to expand review processes from analyzing DIF post-administration to considering fairness starting from the conceptualization and design of assessments.…”
Section: Introductionmentioning
confidence: 99%
“…Test fairness review processes typically involve analyzing items by investigating differential item functioning (DIF) posttest administration. Ercikan and Oliveri (2013) and Oliveri et al (2014) identified shortcomings related to DIF analyses when tests are administered to heterogeneous populations, including under detecting DIF, suggesting the need to expand review processes from analyzing DIF post-administration to considering fairness starting from the conceptualization and design of assessments.…”
Section: Introductionmentioning
confidence: 99%
“…Em síntese, pelas evidências apresentadas, verificaram-se evidências satisfatórias para o instrumento frente ao modelo Rasch empregado, o que possibilitou a análise de funcionamento diferencial dos itens (DIF). Destaca-se que a inspeção prévia de adequação dos dados ao modelo Rasch minimiza a possibilidade de apurar diferenças em função de erros assistemáticos, o que torna as inspeções realizadas a priori indicadas ao se buscar DIF entre grupos (Oliveri, Ercikan, & Zumbo, 2014). Em relação ao funcionamento diferencial, analisaram-se as diferenças em função de três critérios, que foram empregados anteriormente na literatura: 1) diferenças entre grupos com valores t superiores a t> 2.00) diferenças no parâmetro de dificuldade b DIF >|.40| entre os grupos; e 3) nível mínimo de significância estatística para as diferenças encontradas igual a p<.05 (Ambiel, Carvalho, Moreira, & Bacan, 2016;Linacre, 2009;Primi, Carvalho, Miguel, & Silva, 2010).…”
Section: Tabela 1 Análise De Dimensionalidade E Resíduos Por Componenunclassified
“…Whitmore and Schumacker (1999) conducted a simulation with DIF size variations of 5% and 15%. The latest research by increasing the proportion of smaller DIF sizes is 0%, 15%, and 30% (Oliveri, Ercikan, & Zumbo, 2014).…”
Section: Differential Item Functioningmentioning
confidence: 99%
“…Wingen3.0 is a response data generation program that can be conditioned based on the needs of research analysis. The generation of data using the Wingen3.0 program was also carried out by (Han, 2007;Oliveri et al, 2014). The response data generation settings are explained in the next procedure.…”
Section: Data Generationmentioning
confidence: 99%