Postural control is an adaptive process that can be affected by many aspects of human behavior, including emotional contexts. The main emotional contexts that affect postural control are postural threat and passive viewing of aversive or threatening images, both of which produce a reduction in postural sway. The aim of the present study was to assess whether similar stress-related changes in postural sway can be observed using stress induced by social evaluative threat (SET) while performing arithmetic tasks. Twelve young adults performed an arithmetic and a postural control task separately, concurrently, and concurrently with added time pressure in the arithmetic task. In the final condition, participants were given negative feedback about their performance in the arithmetic task and performed it again while being observed (SET condition). Results showed that stress increased linearly with task demand. Postural sway and reaction times were not affected by the first two conditions; however, when time pressure was introduced, reaction times became faster and sway amplitude increased. Finally, introduction of SET caused the predicted reduction in postural sway and an increase in reaction times relative to the time pressure condition. Our results suggest that stress induced using a combination of arithmetic tasks and social evaluative threat leads to systematic changes in postural control. The paradigm developed in the present study would be very useful in assessing interactions between cognition, stress, and postural control in the context of postural instability and falls in older adults.