Addiction to psychostimulants, including cocaine and amphetamine, is associated with dysregulation of dopamine and serotonin (5-HT) neurotransmitter systems. Neuroadaptations in these systems vary depending on the stage of the drug taking-abstinence-relapse cycle. Consequently, the effects of potential treatments that target these systems may vary depending on whether they are given during abstinence or relapse. In this review, we discuss evidence that dopamine D3 receptors (D3Rs) and 5-HT1B receptors (5-HT1BRs) are dysregulated in response to both chronic psychostimulant use and subsequent abstinence. We then review findings from preclinical self-administration models which support targeting D3Rs and 5-HT1BRs as potential medications for psychostimulant dependence. Potential side effects of the treatments are discussed and attention is given to studies reporting positive treatment outcomes that depend on: 1) whether testing occurs during abstinence versus relapse, 2) whether escalation of drug self-administration has occurred, 3) whether the treatments are given repeatedly, and 4) whether social factors influence treatment outcomes. We conclude that D3/D2 agonists may decrease psychostimulant intake; however, side effects of D3/D2R full agonists may limit their therapeutic potential, whereas D3/D2R partial agonists likely have fewer undesirable side effects. D3-selective antagonists may not reduce psychostimulant intake during relapse, but nonetheless, may decrease motivation for seeking psychostimulants with relatively few side-effects. 5-HT1BR agonists provide a striking example of treatment outcomes that are dependent on the stage of the addiction cycle. Specifically, these agonists initially increase cocaine’s reinforcing effects during maintenance of self-administration, but after a period of abstinence they reduce psychostimulant seeking and the resumption of self-administration. In conclusion, we suggest that factors contributing to dysregulation of monoamine systems, including drug history, abstinence, and social context, should be considered when evaluating potential treatments to better model treatment effects in humans.