Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The severe contamination of groundwater supplies in rural areas is a global problem that requires strict environmental measures. Related to this, one of the most important challenges at present is the elimination of local sources of pollution. Therefore, this research examined the local water quality changes following the construction of the sewerage network, under the framework of long-term monitoring (2011–2022) in Báránd, Hungary, using water quality indices and GIS (Geographic Information System) techniques. In order to understand the purification processes and spatial and temporal changes, three periods were determined: the pre-sewerage period (2011–2014), the transitional period (2015–2018), and the post-sewerage period (2019–2022). Forty monitoring wells were included in the study, ensuring complete coverage of the municipality. The results revealed a high level of pollution in the area in the pre-sewerage period. Based on the calculated indices, an average of 80% of the wells were ranked in categories 4–5, indicating poor water quality, while less than 8% were classified in categories 1–2, indicating good water quality. No significant purification process was detected in the transitional period. However, marked changes were observed in the post-sewerage period as a result of the elimination of local sources of pollution. In the post-sewerage period, the number of monitoring wells ranked as excellent and good increased significantly. Additionally, the number of wells assigned to category 5 decreased markedly, compared to the reference period. The significant difference between the three periods was confirmed by the Wilcoxon test as well (p < 0.05). Based on interpolated maps, it was found that, in the post-sewerage period, an increasing section of the settlement had good or excellent water quality. In addition to an assessment of long-term tendencies, the annual fluctuations in the water quality of the wells were also examined. This showed that the purification processes do not occur in a linear pattern but are influenced by various factors (e.g., precipitation). Our results highlight the importance of protecting and improving groundwater resources in municipal areas and the relevance of long-term monitoring of water adequate management policy.
The severe contamination of groundwater supplies in rural areas is a global problem that requires strict environmental measures. Related to this, one of the most important challenges at present is the elimination of local sources of pollution. Therefore, this research examined the local water quality changes following the construction of the sewerage network, under the framework of long-term monitoring (2011–2022) in Báránd, Hungary, using water quality indices and GIS (Geographic Information System) techniques. In order to understand the purification processes and spatial and temporal changes, three periods were determined: the pre-sewerage period (2011–2014), the transitional period (2015–2018), and the post-sewerage period (2019–2022). Forty monitoring wells were included in the study, ensuring complete coverage of the municipality. The results revealed a high level of pollution in the area in the pre-sewerage period. Based on the calculated indices, an average of 80% of the wells were ranked in categories 4–5, indicating poor water quality, while less than 8% were classified in categories 1–2, indicating good water quality. No significant purification process was detected in the transitional period. However, marked changes were observed in the post-sewerage period as a result of the elimination of local sources of pollution. In the post-sewerage period, the number of monitoring wells ranked as excellent and good increased significantly. Additionally, the number of wells assigned to category 5 decreased markedly, compared to the reference period. The significant difference between the three periods was confirmed by the Wilcoxon test as well (p < 0.05). Based on interpolated maps, it was found that, in the post-sewerage period, an increasing section of the settlement had good or excellent water quality. In addition to an assessment of long-term tendencies, the annual fluctuations in the water quality of the wells were also examined. This showed that the purification processes do not occur in a linear pattern but are influenced by various factors (e.g., precipitation). Our results highlight the importance of protecting and improving groundwater resources in municipal areas and the relevance of long-term monitoring of water adequate management policy.
Recently, Integrated Multi-satellite Retrievals for the Global Precipitation Measurement (IMERG) mission and European Centre for Medium-Range Weather Forecasts Reanalysis v5 (ERA5) precipitation datasets have been widely used in remote sensing and atmospheric studies, respectively, because of their high accuracy. A dataset of 268 site-gauge precipitation measurements over the Yellow River Basin in China was used in this study to comprehensively evaluate the performance of three high-resolution precipitation products, each with a spatial resolution of 0.1°, consisting of two satellite-derived datasets, IMERG and multisource weighted-ensemble precipitation (MSWEP), and one ERA5-derived dataset, ERA5-Land. The results revealed that the spatial distribution of IMERG annual precipitation closely resembled that of the observed rainfall and generally exhibited a downward trend from southeast to northwest. Among the three products, IMERG had the best performance at the annual scale, whereas ERA5-Land had the worst performance due to significant overestimation. Specifically, IMERG demonstrated the highest correlation coefficient (CC) above 0.8 and the lowest BIAS and root mean square error (RMSE), with values in most regions of 24.79 mm/a and less than 100 mm/a, respectively, whereas ERA5-Land presented the highest RMSE exceeding 500 mm/a, BIAS of 1265.7 mm/a, and the lowest CC below 0.2 in most regions. At the season scale, IMERG also exhibited the best performance across all four seasons, with a maximum of 17.99 mm/a in summer and a minimum of 0.55 mm/a in winter. Following IMERG, the MSWEP data closely aligned with the observations over the entire area in summer, southern China in spring and winter, and middle China in autumn. In addition, IMERG presented the highest Kling–Gupta efficiency coefficient (KGE) of 0.823 at the annual scale and the highest KGE (>0.77) across all four seasons among the three products compared with ERA5-Land and MSWEP, which had KEG values of −2.718 and −0.403, respectively. Notably, ERA5-Land exhibited a significant positive deviation from the observations at both the annual and seasonal scales, whereas the other products presented relatively smaller biases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.