The relationship between the endocannabinoid system in the renal medulla and the long-term regulation of blood pressure is not yet understood. To investigate the possible role of the endocannabinoid system in renomedullary interstitial cells, mouse medullary interstitial cells (MMICs) were obtained, cultured, and characterized for their responses to treatment with a selective inhibitor of fatty acid amide hydrolase, PF-3845 (N-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2pyridinyl]oxy]phenyl]methyl]-1-piperidinecarboxamide). Treatment of MMICs with PF-3845 increased cytoplasmic lipid granules detected by Sudan Black B staining and multilamellar bodies identified by transmission electron microscopy. High-performance liquid chromatography (HPLC) analyses of lipid extracts of MMIC culture medium revealed a 205-nm absorbing peak that showed responsiveness to PF-3845 treatment. The biologic activities of the PF-3845-induced product (PIP) isolated by HPLC were investigated in anesthetized, normotensive surgically instrumented mice. Intramedullary and intravenous infusion of PIP at low dose rates (0.5-1 area units under the peak/10 min) stimulated diuresis and natriuresis, whereas these parameters returned toward baseline at higher doses but mean arterial pressure (MAP) was lowered. Whereas intravenous bolus doses of PIP stimulated diuresis, the glomerular filtration rate, and medullary blood flow (MBF) and reduced or had no effect on MAP, an intraperitoneal bolus injection of PIP reduced MAP, increased MBF, and had no effect on urine parameters. These data support a model whereby PF-3845 treatment of MMICs results in increased secretion of a neutral lipid that acts directly to promote diuresis and natriuresis and indirectly through metabolites to produce vasodepression. Efforts to identify the structure of the PF-3845-induced lipid and its relationship to the previously proposed renomedullary antihypertensive lipids are ongoing.