Woody encroachment is one of the greatest threats to grasslands globally, depleting a suite of ecosystem services, including forage production and grassland biodiversity. Recent evidence also suggests that woody encroachment increases wildfire danger, particularly in the Great Plains of North America, where highly volatile Juniperus spp. convert grasslands to an alternative woodland state. Spot-fire distances are a critical component of wildfire danger, describing the distance over which embers from one fire can cause a new fire ignition, potentially far away from fire suppression personnel. We assess changes in spot-fire distances as grasslands experience Juniperus encroachment to an alternative woodland state and how spot-fire distances differ under typical prescribed fire conditions compared to conditions observed during wildfire. We use BehavePlus to calculate spot-fire distances for these scenarios within the Loess Canyons Experimental Landscape, Nebraska, U.S.A., a 73,000-ha ecoregion where private-lands fire management is used to reduce woody encroachment and prevent further expansion of Juniperus fuels. We found prescribed fire used to control woody encroachment had lower maximum spot-fire distances compared to wildfires and, correspondingly, a lower amount of land area at risk to spot-fire occurrence. Under more extreme wildfire scenarios, spot-fire distances were 2 times higher in grasslands, and over 3 times higher in encroached grasslands and Juniperus woodlands compared to fires burned under prescribed fire conditions. Maximum spot-fire distance was 450% greater in Juniperus woodlands compared to grasslands and exposed an additional 14,000 ha of receptive fuels, on average, to spot-fire occurrence within the Loess Canyons Experimental Landscape. This study demonstrates that woody encroachment drastically increases risks associated with wildfire, and that spot fire distances associated with woody encroachment are much lower in prescribed fires used to control woody encroachment compared to wildfires.