Background Spine metastasis is common but highly problematic in clinical oncology practice. Radiotherapy plays an important role in the treatment of spine metastasis, but it at the same time damages the nervous tissue, especially the neural stem cell (NSC), and leads to radiation induced myelopathy. Circular RNA (circRNA) is a kind of non-coding RNA which responses to external stimulus and regulates cellular functions. However, the mechanism of radiotherapy affecting NSC and the role of circRNA in this process are still unclear. Methods The circRNA and mRNA of NSC treated with radiation or not were detect using next-generation sequencing. RT-PCR assays were preformed to confirm the sequencing results and the feature of differentially expressed circRNA. Bioinformation analyses were conducted to identified the critical circRNA and mRNA, as well as the enriched functions and pathways. Moreover, a circRNA-miRNA-mRNA network was constructed to investigate the possible regulatory mechanism. Results A total of 421 differentially expressed circRNA and 1602 differentially expressed mRNA of NSC were identified after radiotherapy. The GO and KEGG analysis of the differentially expressed mRNA as well as the host genes of the differentially expressed circRNA were performed and several key signal pathways such as MAPK signal pathway were identified. Moreover, a circRNA-miRNA-mRNA network focusing on MAPK signal pathway was shown and predicted that chr5:127160496|127165240 could be the critical circRNA in the regulatory mechanism of radiation treated NSCs. Conclusion Our finding showed the differentially expressed circRNA and mRNA profiles of NSC after radiotherapy, suggesting that circRNA may contribute to the pathogenesis of radiation induced myelopathy.