The island of Newfoundland, the first of England's overseas colonies, was settled from the 17th century onward by restricted numbers of English, Irish, and French immigrants, in small "outport" communities that have maintained geographic, religious, and linguistic isolation to the latest generations. To measure the extent of modification and loss of genetic variation through founder effect, drift, and inbreeding in this historically isolated population, we analyzed the complete mitochondrial DNA (mtDNA) genomes and 14 microsatellite loci from each of 27 individuals with matrilineal ancestries extending to the colonial period. Every individual has a unique mtDNA genome sequence. All but one of these genomes are assignable to one of five major (H,J,K,T, and U) or minor (I) European haplogroups. The possibility of homoplasy at single nucleotide polymorphism (SNP) sites that define subtypes within the H haplogroup is discussed. Observed haplogroup proportions do not differ significantly from those of western Europeans or between English and Irish Newfoundlanders. The exceptional individual is a member of haplogroup A2, who appears to be the descendant of a Mi'kmaq First Nations mother and a French father, a common marriage pattern in the early settlement of Newfoundland. Microsatellite diversity is high (HE = 0.763), unstructured with respect to mtDNA haplotype or ethnicity, and there is no evidence of linkage disequilibrium. There is a small but significant degree of inbreeding (FIS = 0.0174). Collection of whole mtDNA genome data was facilitated by the use of microarray sequencing, and we describe a simple algorithm that is 99.67% efficient for sequence recovery.