In order to further explore the feasibility of the application of the residue of Chinese herbal medicine in FDM 3D technology and enrich the kinds of printing materials, Astragalus residue powder(ARP)/poly(lactic acid) (PLA) biocomposite was FDM 3D-printed, meanwhile, two traditional biocomposites, i.e., wood flour (WF)/PLA and rice straw powder (RSP)/PLA, were prepared by the same method, and the properties of the biocomposites were comparatively investigated. The results showed that, the tensile and flexural strengths of ARP/PLA were 28.33 MPa and 97.60 MPa, respectively, which were 2.85% and 10.89% smaller than those of WF/PLA, while 15.73% and 7.04% greater than those of RSP/PLA. WF/PLA showed typical brittle fracture characteristics, ARP/PLA and RSP/PLA both showed ductile fracture, but not obviously. Among the three kinds of biocomposites, ARP/PLA was the most thermally stable, followed by WF/PLA and RSP/PLA in turn. The incorporation of natural plant powder had no significant effect on the glassy transition, melting, and cold-crystallization behaviors of PLA, but the crystallinity of PLA could be increased from 0.3% to 2.0% and 1.9%, respectively, by adding ARP and WF. At 20 °C, the storage modulus of ARP/PLA, WF/PLA and RSP/PLA was 2759.4 MPa, 3361.3 MPa, and 2691.5 MPa, respectively, indicating that WF/PLA has the greatest stiffness, and the stiffness of RSP/PLA was the least. In addition to these, all the biocomposites were hydrophilic, the contact angle of the distilled water on the surface of ARP/PLA, WF/PLA or RSP/PLA was correspondingly 73.5°, 77.6° and 71.2°. Overall, it can be concluded that ARP/PLA has moderate strengths, stiffness and wettability, meanwhile, it is the most thermal stable among the three biocomposites, and can be processed at a temperature close to that of PLA. ARP/PLA is suitable as a new kind of feedstock material for FDM 3D printing.