The influence of the Si/Mn ratio on the galvannealing behavior of 1.5 wt% Si − 1.5~2.5 wt% Mn-added steel in the Fe oxidation-reduction process was investigated. The Si/Mn ratio of the steel affected the formation of Si-containing oxides during the annealing process. The amount of SiO 2 formed on the steel surface decreased with as the Si/Mn ratio decreased, while the amount of Mn 2 SiO 4 increased. In addition, the internal oxide formed in a relatively narrow area near the surface in the lower Si/Mn ratio sample, which indicated that the content of solute Si near the surface was lower in the lower Si/Mn ratio sample. The galvannealing reaction was accelerated by decreasing the Si/Mn ratio of the steel. The species and morphology of the Si-containing oxides determined the galvannealing behavior of the Si-added steel. The Si-containing selective surface oxide affected the formation of the initial Fe-Zn intermetallic compounds (IMC) during hot-dipping in molten Zn. The formation of SiO 2 was suppressed in the sample with the lower Si/Mn ratio, which resulted in accelerated Fe-Zn IMC formation. On the other hand, solute Si in the steel affected the growth of the Fe-Zn IMC during heating in the galvannealing process. The content of solute Si was assumed to be lower in the lower Si/Mn ratio sample, which resulted in acceleration of Fe-Zn IMC growth.