Glucose tolerance is lower in the evening and at night than in the morning. However, the relative contribution of the circadian system vs. the behavioral cycle (including the sleep/wake and fasting/ feeding cycles) is unclear. Furthermore, although shift work is a diabetes risk factor, the separate impact on glucose tolerance of the behavioral cycle, circadian phase, and circadian disruption (i.e., misalignment between the central circadian pacemaker and the behavioral cycle) has not been systematically studied. Here we show-by using two 8-d laboratory protocols-in healthy adults that the circadian system and circadian misalignment have distinct influences on glucose tolerance, both separate from the behavioral cycle. First, postprandial glucose was 17% higher (i.e., lower glucose tolerance) in the biological evening (8:00 PM) than morning (8:00 AM; i.e., a circadian phase effect), independent of the behavioral cycle effect. Second, circadian misalignment itself (12-h behavioral cycle inversion) increased postprandial glucose by 6%. Third, these variations in glucose tolerance appeared to be explained, at least in part, by different mechanisms: during the biological evening by decreased pancreatic β-cell function (27% lower earlyphase insulin) and during circadian misalignment presumably by decreased insulin sensitivity (elevated postprandial glucose despite 14% higher late-phase insulin) without change in early-phase insulin. We explored possible contributing factors, including changes in polysomnographic sleep and 24-h hormonal profiles. We demonstrate that the circadian system importantly contributes to the reduced glucose tolerance observed in the evening compared with the morning. Separately, circadian misalignment reduces glucose tolerance, providing a mechanism to help explain the increased diabetes risk in shift workers.circadian disruption | shift work | night work | glucose metabolism | diabetes I n healthy humans, there is a strong time-of-day variation in glucose tolerance, with a peak in the morning and a trough in the evening and night (1-6). Understanding the underlying mechanisms of the day/night variation in glucose tolerance is important for diurnally active individuals as well as shift workers, who are at increased risk for developing type 2 diabetes (7-9). The endogenous circadian system and circadian misalignment (i.e., misalignment between the endogenous circadian system and 24-h environmental/behavioral cycles) have been shown to affect glucose metabolism (4,(10)(11)(12)(13)(14). However, the relative and separate importance of the endogenous circadian system and circadian misalignment-after accounting for behavioral cycle effects (including the sleep/wake, fasting/feeding, and physical inactivity/activity cycles, etc.)-on 24-h variation in glucose tolerance is not well understood.Most species have evolved an endogenous circadian timing system that optimally times physiological variations and behaviors relative to the 24-h environmental cycle (15-17). The mammalian circadian system is comp...