The inhibitory effect of chlorine (50, 100, and 200 mL/kg) and thiamine dilauryl sulfate (TDS: 100, 500, and 1,000 mg/kg) on Listeria monocytogenes in chicken breast was investigated. Also, predictive growth models as a function of chlorine and TDS concentration, and storage temperature (4, 10, and 15°C) were developed using a polynomial model. Listeria monocytogenes counts were significantly (P < 0.05) different in samples treated with sterile distilled water and combinations of chlorine and TDS. The maximum reduction effect was 0.5 log cfu/g by combined treatment of 200 mL/kg chlorine and 1,000 mg/kg TDS. The largest synergistic effect was 0.38 log cfu/g by combined treatment of 100 mL/kg chlorine and 1,000 mg/kg TDS. The primary models that were developed to obtain the specific growth rates (SGR) and lag time (LT) had good fitness (R(2) > 0.91) determined by the reparameterized Gompertz equation. The secondary polynomial models were calculated by nonlinear regression analysis. In the validation of the developed models, the bias factor (Bf) and accuracy factor (Af) for SGR were 0.54 and 1.84, respectively, whereas those for LT were 0.97 and 1.04, respectively. In quality analysis, chlorine and TDS did not change the color or texture of chicken breast meat during storage at 4°C for 7 d. Thus, our findings indicate that a combined treatment of 100 mL/kg chlorine and 1,000 mg/kg TDS appears to an effective method into reduce L. monocytogenes in broiler carcasses with no negative effects on color and textural quality. The predictive models were in good agreement with the validation and may be used to predict L. monocytogenes growth in chicken breast.