The thermal stabilities of hard carbon spherule (HCS), artificial graphite (AG), and natural graphite (NG) were investigated by thermo-gravimetric differential scanning calorimetry (TG-DSC). After lithiation, AG shows the lowest onset exothermic temperature. However, all there materials exhibit similar onset temperatures for thermal reactions after ten cycles. It is obvious that the thermal behaviors of solid electrolyte interphase (SEI) film for HCS and AG change gradually with the electrochemical cycling. In contrast, the thermal stability of the surface film on NG is maintained during repeated lithium ion insertion/extraction. Because of their different Li storage behaviors, their thermal reactivities with electrolyte are quite different from each other. Especially for HCS, it shows several successive and different exothermic peaks at the 1st and 11th lithiated states, while both AG and NG display similar thermal reactivity before and after repeated cycles. In summary, it is found that thermal properties of SEI layer and lithium in lithiated carbonaceous materials for all three samples have different impacts on the whole thermal behaviors of electrode.