Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Large strain measurement under high-temperature environment has been a hot but difficult research issue in the fields of measurement and metrology. However, conventional resistive strain gauges are susceptible to electromagnetic interference at high temperature, and typical fiber sensors will be invalid under high-temperature environment or fall off under large strain conditions. In this paper, aiming to achieve effective and precision measurement of large strain under high-temperature environment, a systematic scheme combining a well-designed encapsulation of a fiber Bragg grating (FBG) sensor and a special surface treatment method using plasma is presented. The encapsulation protects the sensor from damage while achieving partial thermal isolation and avoiding shear stress and creep, resulting in higher accuracy. And the plasma surface treatment provides a new bonding solution which can greatly improve the bonding strength and coupling efficiency without damaging the surface structure of the object under test. Suitable adhesive and temperature compensation method are also carefully analyzed. Consequently, large strain measurement up to 1500 µɛ under high-temperature (1000°C) environment is experimentally achieved in a cost-effective way.
Large strain measurement under high-temperature environment has been a hot but difficult research issue in the fields of measurement and metrology. However, conventional resistive strain gauges are susceptible to electromagnetic interference at high temperature, and typical fiber sensors will be invalid under high-temperature environment or fall off under large strain conditions. In this paper, aiming to achieve effective and precision measurement of large strain under high-temperature environment, a systematic scheme combining a well-designed encapsulation of a fiber Bragg grating (FBG) sensor and a special surface treatment method using plasma is presented. The encapsulation protects the sensor from damage while achieving partial thermal isolation and avoiding shear stress and creep, resulting in higher accuracy. And the plasma surface treatment provides a new bonding solution which can greatly improve the bonding strength and coupling efficiency without damaging the surface structure of the object under test. Suitable adhesive and temperature compensation method are also carefully analyzed. Consequently, large strain measurement up to 1500 µɛ under high-temperature (1000°C) environment is experimentally achieved in a cost-effective way.
The operating safety of spacecraft in space environments is closely related to the surface discharging phenomenon of dielectrics such as polyimide (PI) film in solar arrays; moreover, carrier traps in the dielectric can affect its insulation performance. Therefore, to improve the vacuum surface flashover characteristics of PI film by nano modification and reveal the effect of trap distribution on the flashover of PI composite film, first, the original PI and nano-ZnO/PI composite films with different additive amounts (0.5, 1, 2, and 3 wt.%) were prepared by in situ polymerization and their performance was evaluated by the physicochemical properties characterized by methods such as thermogravimetric analysis; second, the surface traps of the original and nanocomposite films were measured and calculated by surface potential decay method, and the carrier mobility was also obtained; finally, the vacuum direct current (DC) surface flashover characteristics and bulk resistivity of all the film samples were measured and analyzed. The experiment results showed that with the increase in the amount of nano-ZnO, both the shallow and deep trap density increased significantly, while the trap energy varied slightly, and the surface flashover voltage also increased obviously. Based on the multi-core model, the increases in the shallow and deep trap density after the introduction of nano-ZnO into the PI matrix was analyzed from the microscopic perspective of the interface. Based on the comparative analysis of the trap distribution and surface flashover voltage characteristics, a bilayer model of vacuum DC surface flashover development was proposed. In the bilayer model, deep traps and shallow traps play a dominant role in the vacuum–solid interface and the inner surface of the dielectric, respectively, and increasing the trap density could effectively inhibit secondary electron multiplication on the surface and accelerate charge dissipation inside the film. Consequently, nano-ZnO can purposefully control the trap distribution, and then improve the flashover characteristics of nano-ZnO/PI composite films, which provides a new approach for improving the spacecraft material safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.