Poultry co-product chicken frames (CF) and wooden breast (WB) along with ingredient technology use may bring enhanced value to the pet food industry. Therefore, the current study focused on evaluating CF and WB combinations along with sodium alginate and encapsulated calcium lactate pentahydrate (ALGIN) inclusion within a fresh pet food formulation under simulated shelf-life conditions. Fresh chicken frames (CF) and boneless-skinless wooden breast (WB) were ground and allocated randomly to one of ten treatment combinations with either 0.5 or 1.0% added ALGIN. Ground treatments were placed into a form and fill vacuum package and stored using a reach-in refrigerated case for 21 days. Packages were evaluated for instrumental surface color, lipid oxidation, water activity, and pH on days 1, 3, 7, 14 and 21 of the display. Packages of pet food were lighter, less red, and more yellow (p < 0.05) with increasing percentages of CF regardless of ALGIN inclusion, whereas pH was greater (p < 0.05) and lipid oxidation was less (p < 0.05) with increasing percentage of WB. Water activity increased (p < 0.05) when WB and ALGIN inclusion increased. The current results suggest that the use of ALGIN in a poultry co-product pet food formulation can improve shelf-life characteristics such as surface color and lipid oxidation in fresh pet food.