Feedlot cattle in Alberta, Canada, have been identified as reservoirs for Campylobacter jejuni, an important human pathogen. Oligonucleotide DNA microarrays were used as a platform to compare C. jejuni isolates from feedlot cattle and human clinical cases from Alberta. Comparative genomic hybridization (CGH) analysis was performed on 87 isolates (46 bovine, 41 human) obtained within the same geographical regions and time frame. Thirteen CGH clusters were obtained based on overall comparative genomic profile similarity. Nine CGH clusters contained human and cattle isolates, three contained only human isolates, and one contained only cattle isolates. The study isolates clustered regardless of temporal or geographical frameworks. In addition, array genes (n â«Ű⏠1,399) were investigated on a gene-by-gene basis to see if any were unequally distributed between human and cattle sources or between clusters dominated by either human or cattle isolates ("human enriched" versus "cattle enriched"). Using Fisher's exact test with the Westfall and Young correction for these comparisons, a small number of differentially distributed genes were identified. Our findings suggest that feedlot cattle and human C. jejuni strains are very similar and may be endemic within Alberta. Further, the common distribution of human clinical and bovine C. jejuni isolates within the same genetically based clusters suggests that dynamic and important transmission routes between cattle and human populations may exist.