The effects of high hydrostatic pressure (HP), protein concentration, and sugar concentration on the gelation of a whey protein isolate (WPI) were investigated. Differing concentrations of WPI solution in the presence or absence of lactose (0-20%, w/v) were pressurized at 200-1000 MPa and incubated at 30°C for 10 min. The hardness and breaking stress of the HPinduced gels increased with increasing concentration of WPI (12-20%) and pressure. Lactose decreased the hardness and breaking stress of the gel. Furthermore, these results were used to establish an artificial neural network (ANN). A multiple layer feed-forward ANN was also established to predict the physical properties of the gel based on the inputs of pressure, protein concentration, and sugar concentration. A useful prediction was possible, as measured by a low mean square error (MSE < 0.05) and a regression coefficient (R 2 > 0.99) between true and predicted data in all cases.